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Abstract

We extend Control as Inference (Cal) [1,2] to constrained RL using stochastic
decision horizons, where constraint violations reduce continuation probabilities,
attenuating rewards and shortening the effective planning horizon. The resulting
survival-weighted objective remains replay-compatible for off-policy learning
and yields SAC/MPO-style updates under absorbing or virtual termination
semantics. Experiments show improved sample efficiency and strong
return-violation trade-offs, scaling to high-dimensional musculoskeletal control.
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Problem Formulation

Constrained RL is commonly modeled as a CMDP: an infinite-horizon
discounted MDP with per-step violation signals. The objective maximizes
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Scalable Off-policy Algorithms

[ VT-MPO ] Maximizes the VT-ELBO using policy updates similar

to Maximum-a-posteriori Policy Optimization (MPO) [3]

Maximizes the AS-ELBO using policy updates similar
AS-SAC to Soft Actor Critic (SAC) [4]

Remark (Critic). AS and VT share the same survival-shaped critic: Bellman
backups use (7,7) and remain a contraction (sup(s,a) <), enabling stable
off-policy replay. e

Remark (AS subtlety). Under AS, regularization is survival-weighted, inducing

a non-constant “/iving cost’. To address this, we propose a two-critic decoupling
that enables principled off-policy temperature tuning.

Experiments

HYFYDY

In Hyfydy musculoskeletal control environments, VT-MPO scales in our
minimal effort-velocity constrained formulation, using a single continuation
schedule shared across tasks. It learns low-effort gaits that meet the target

expected return subject to bounds on the expected discounted cumulative velocity without Lagrange multipliers or adaptive dual tuning, and trains

violation cost, or via a chance constraint limiting the probability of ever violating robustly across seeds. Under the same objective and protocol, VT-MPO
improves the effort-velocity trade-off over EWA, a state-of-the-art adaptive

safety. - - - - effort-weight baseline.
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Challenge: Most practical CMDP algorithms rely on Lagrangian or primal-dual
methods, which (1) are typically on-policy, (2) require careful tuning of dual S
variables, and (3) integrate poorly with modern off-policy actor-critic methods. T
At the same time, infeasible experience is often informative and unavoidable
during exploration. >
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Our Approach N
Env. Steps (millions)

Instead of enforcing constraints via dual variables or hard feasibility, using Cal SAFETY-GYMNASIUM
we model safety as state-action-dependent survival: violations reduce the
continuation probability a(s, a), shortening the effective horizon (s, a) := v a(s, a) On Safety Gymnasium, VT-MPO and AS-SAC substantially reduce violations
and attenuating rewards 7 (s, a) := a(s, a)r(s,a) This generalizes termination style relative to unconstrained MPO while preserving reward, yielding smooth
relaxations such as CaT [5] by treating the continuation model as a flexible return-violation trade-offs without Lagrange multipliers. VT-MPO is robust
mapping from violation signals. The resulting survival-weighted objectives are across tasks and seeds with stable learning dynamics, whereas AS-SAC is
replay-compatible and induce off-policy schemes with SAC/MPO-style updates. more return-seeking, often reaching higher asymptotic reward when costs are

driven low, but shows higher variance when violations persist.
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We distinguish two termination semantics: virtual termination (VT), where the " 00 |4 0
agent continues acting after a violation, and absorbing state (AS), where a 0.0 0.5 1.0 0.0 0.5 1.0
violation ends the decision process. Both share the same survival-weighted Env. Steps (millions)

return, but KL-regularization is discounted differently. standard in VT,
survival-weighted in AS, leading to different policy updates.

Main Theorem Future Directions

1. Unify SDH theory (AS/VT) as a regularized MDP
t—1 2. Learn continuation to automatically match target
T (W) TR Zu f(s q ) o H ~(S a ) violation levels
sury T T AN AR 2 T\5k, Ak)- 3. Risk + new regimes (distributional / offline / Paper Website
k=0

t>0 model-based).
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