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Highlights

Our Approach

In Hyfydy musculoskeletal control environments, VT-MPO scales in our 
minimal effort-velocity constrained formulation, using a single continuation 
schedule shared across tasks. It learns low-effort gaits that meet the target 
velocity without Lagrange multipliers or adaptive dual tuning, and trains 
robustly across seeds. Under the same objective and protocol, VT-MPO 
improves the effort-velocity trade-off over EWA, a state-of-the-art adaptive 
effort-weight baseline.
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VT-ELBO

AS-ELBO

Problem Formulation

We extend Control as Inference (CaI) [1,2] to constrained RL using stochastic 
decision horizons, where constraint violations reduce continuation probabilities, 
attenuating rewards and shortening the effective planning horizon. The resulting 
survival-weighted objective remains replay-compatible for off-policy learning 
and yields SAC/MPO-style updates under absorbing or virtual termination 
semantics. Experiments show improved sample efficiency and strong 
return-violation trade-offs, scaling to high-dimensional musculoskeletal control.

Future Directions
1. Unify SDH theory (AS/VT) as a regularized MDP
2. Learn continuation to automatically match target 

violation levels
3. Risk + new regimes (distributional / offline / 

model-based).

On Safety Gymnasium, VT-MPO and AS-SAC substantially reduce violations 
relative to unconstrained MPO while preserving reward, yielding smooth 
return-violation trade-offs without Lagrange multipliers. VT-MPO is robust 
across tasks and seeds with stable learning dynamics, whereas AS-SAC is 
more return-seeking, often reaching higher asymptotic reward when costs are 
driven low, but shows higher variance when violations persist.

Constrained RL is commonly modeled as a CMDP: an infinite-horizon 
discounted MDP with per-step violation signals. The objective maximizes 
expected return subject to bounds on the expected discounted cumulative 
violation cost, or via a chance constraint limiting the probability of ever violating 
safety.

We distinguish two termination semantics: virtual termination (VT), where the 
agent continues acting after a violation, and absorbing state (AS), where a 
violation ends the decision process. Both share the same survival-weighted 
return, but KL-regularization is discounted differently: standard in VT, 
survival-weighted in AS, leading to different policy updates.

Scalable Off-policy Algorithms

VT-MPO

AS-SAC

Instead of enforcing constraints via dual variables or hard feasibility, using CaI 
we model safety as state-action-dependent survival: violations reduce the
continuation probability _____, shortening the effective horizon______________
and attenuating rewards _________________ This generalizes termination style 
relaxations such as CaT [5] by treating the continuation model as a flexible 
mapping from violation signals. The resulting survival-weighted objectives are 
replay-compatible and induce off-policy schemes with SAC/MPO-style updates.

Maximizes the VT-ELBO using policy updates similar 
to Maximum-a-posteriori Policy Optimization (MPO) [3]

Maximizes the AS-ELBO using policy updates similar 
to Soft Actor Critic (SAC) [4]

Probabilistic Graphical Model

Challenge: Most practical CMDP algorithms rely on Lagrangian or primal-dual 
methods, which (1) are typically on-policy, (2) require careful tuning of dual 
variables, and (3) integrate poorly with modern off-policy actor-critic methods. 
At the same time, infeasible experience is often informative and unavoidable 
during exploration.

Main Theorem

Remark (Critic). AS and VT share the same survival-shaped critic: Bellman 
backups use______and remain a contraction_____________, enabling stable 
off-policy replay.

Remark (AS subtlety). Under AS, regularization is survival-weighted, inducing 
a non-constant “living cost”. To address this, we propose a two-critic decoupling 
that enables principled off-policy temperature tuning.
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